Education Matters - News impacting schools, teachers and students

Primary school science – highlights and pitfalls


Science is rarely given top priority on a primary school agenda, but as a nation, if we are to compete on an international level, we must engage more people with science, writes Danielle Spencer.

 Teaching our next generation is a privileged position and it could be argued that teachers generally enjoy their job, try their best and love working with children. Primary school teachers afford a special position as they work with such young learners. As generalists, primary school teachers must teach the breadth of the curriculum; from English to Art, from Science to Geography. Every primary school teacher I know often laments of just how to fit it all in a 25 hour week. Then take out the time for sports days, special event days, excursions or additional non-curricular activities. It is a difficult juggle. It is also difficult to be able to maintain the same level of enthusiasm for each subject area, let alone possess a depth of content knowledge for each curriculum area. Effective science teaching though can encompass many aspects of literacy and numeracy and this is where we should place an emphasis, on making these links between science and the real world. The decline of student’s interest in science as they progress through their schooling is well documented and this is worrying for Australia. If we don’t capture a child in their primary years and hook them on to science, it becomes increasingly difficult to develop an appreciation and interest in science and what science can offer – primary school science and primary school teachers hold the key.

The introduction of the Australian Curriculum (ACARA) has proven to be a double-edged sword to some. Although ensuring a national consistency in curriculum content and explicitly defining learning intent that students must achieve at given year levels, the national curriculum is content laden. Individual state education departments have developed curriculum documents in response to ACARA, however many of these too are overloaded. For beginning teachers and teachers not as comfortable with the teaching of science, to be able discriminately unpack these documents and make relevant curriculum decisions that address the needs of their specific learners can be tortuous. Additionally, many primary school teachers admit to having limited content knowledge themselves, especially in the fields of physics and chemistry, which makes curriculum decisions even more difficult. Consequently, their enthusiasm for the subject area wanes, their ease at which they communicate science with their class suffers and teachers develop a poor self-efficacy around teaching science. Given Hattie’s research1, that greatest influence on student performance and educational outcomes is the teacher, it is vital that we support our primary teachers in the teaching of science.

There are many barriers to effective science teaching in primary school but resourcing and the time to prepare resources would be amongst the top barriers for many primary teachers. The long list of consumables, such as baking soda, batteries or vinegar, must be replenished and primary teachers usually pay for these consumables out of their own pockets. Many schools have limited stocks of science equipment so teachers constantly make-do. Re-used cups become beakers, and plastic plates become petri dishes. Whilst primary teachers are typically highly resourceful and extraordinary recyclers, these practices de-value the importance of science and best practice is threatened. Unless science has been given priority on a school agenda, purchasing science equipment from a limited curriculum budget becomes problematic. Some primary schools, having developed positive relationships with their nearby high schools, are able to borrow scientific equipment but for many schools this is not possible. Then, once resourcing has been established, the primary school teacher does not have the luxury of a lab tech. Primary teachers must themselves prepare and organise equipment for group or individual work. Afterwards, they must find more time to pack up and clean everything. Science delivery in primary schools is financially burdensome and time consuming for teachers.

Inquiry-based science learning that gets dirty and untidy, where children direct their own learning, can also be tricky with young learners. Group negotiation and collaboration become necessary skills that teachers must explicitly teach. When you couple a difficult cohort of children, with a primary teacher who is not comfortable teaching science, inquiry learning in science suffers.

Science is rarely given top priority on a primary school agenda. Principals, themselves being pressured from above, are concerned with raising their performance in high-stakes National Assessment Program Literacy and Numeracy (NAPLAN) testing. The data gleaned from NAPLAN plays a huge driving force in school agenda. Literacy and numeracy become the school focus. Primary teachers, regularly involved in training and in-servicing around literacy and numeracy, often feel pressured to focus on these areas at the sake of other learning areas.

Consequently, science is often delivered with a strict time constraint or relegated to the afternoon sessions. Scientific literacy is often not given equal importance despite Australia’s need to raise scientifically literate students as well. The evidence from the 2012 National Assessment Program – Science Literacy (NAP-SL)2 highlights that just 51% of Australian students perform at or above the proficient standard of scientific literacy. For our indigenous students, the percentage of those performing at or above the proficient standard was just 20%. Students in rural or remote areas and those whose home language is not English also perform worse. Government and primary school administrators must address this concerning lack of scientific literacy in our young learners.

If, as a nation, we are to compete on an international level, we must engage more people with science. It is worrying that our primary students do not perform better on an international scale. Results from the 2011 Trends in International Mathematics and Science Study (TIMMS)3 highlight that 29% of our Year 4 students achieved at or below the low international benchmark. Almost 1:3 children were unable to think scientifically. Carried out every three years, the Programme for International Student Assessment (PISA) surveys 15 year old students from 65 countries around the world in mathematical, scientific and reading literacy skills. Our international ranking in PISA in scientific literacy has not changed since 2006. Whilst we do perform well, there is a large variance in student performance.

Despite all the barriers to teaching science in primary school, and the apparent poor results in national and international testing, there are countless cases of wonderful practices, some incredible teachers of primary science and individual schools that do their utmost to prioritise science. You only need to review some of the winners of the Australian Prime Minister Prize for Excellence in Science Teaching to see exceptional and inspirational teachers of primary science. Winners such as Brian Schiller (2014) who creatively incorporates science across the curriculum (even to Japanese) and Cheryl Capra (2007) who developed an astronomy program at her local school and became a NASA partner school. There would be countless other, unrecognised teachers out there in our primary schools doing similar things just because they love science. These teachers encourage their young learners to participate in regional, state and national science competitions, like NATA’s Young Scientist of the Year Competition which has hundreds of entries each year. Schools hold events such as science fairs or science competitions to celebrate National Science Week. In the highly recommended CSIRO Visiting Scientist and Mathematician Program, schools are making partnerships with real-life scientists, engaging their students with science professionals and exposing their students to the possibilities of science careers. These cases need to be celebrated and shared so that more teachers and schools will attempt them.

The major advantage of teaching science to young learners in primary school is that it can be so much fun. Teaching science can be easy, as you can feed off a child’s innate sense of wonder and curiosity with their world. Most children want to make sense of their world and science activities that are relevant and linked with real-world activities are well accepted. There are endless possibilities to highlight science in action. Young children are typically not afraid to display their wonder at discovering new phenomena. The noise of discovery from a child is infectious for the teacher and provides an instant feedback of learning.

At Mitchelton State School in Queensland, science is slowly becoming embedded into our schooling fabric. Three years ago, SC@M or Science Club at Mitchie was established. From the first intake of just 22 students, current enrolment in SC@M is 62 students. SC@M is an extra-curricular weekly science club, where the emphasis is on learning science through play. The major aim of SC@M is to instil a love of scientific curiosity. The focus of each term differs, from Earth Sciences, Chemistry, and Physics to Biology. Student learning is facilitated through a range of experiences that involve students experimenting with various phenomena. It is loud, messy and an incredible amount of fun. Additional extra-curricular science clubs have been launched as well. SC@M in Space, Astronomy Club and a Robotics Club are both in their second year. SC@M in Space Astronomy Club was fortunate to have a long–standing relationship with a Visiting CSIRO Scientist. Students from Mitchelton State School have been awarded with prizes in the national 60 Second Science Contest and NATA’s Young Scientist of the Year competitions. Principal Maria Berriman has recognised the value of science and the value of up-skilling all teachers. With some twisting and intricate juggling of the budget bucket, she has restructured staffing to include a Science Coach position one day each week. The Science Coach’s role includes working collaboratively with teachers and assisting teachers to develop capacity in their teaching of science. Mitchelton State School aims to encourage all students to engage in scientific pursuits and established the “Young Scientist of the Year Award” in 2014. This perpetual trophy is awarded to a child who may not necessarily be a top academic performer in science, but rather a child who embodies a love of science and science learning. The inaugural Young Scientist of the Year had been a member of SC@M since its inception, as well as both the Astronomy and Robotics Club, entered any science competition she could and was an avid and involved learner in class. It is children just like this that we need to foster through primary science.

In commenting on hopes for the future for science education in primary schools, we must hope that science is given priority, not just on an individual school agenda but also on a national agenda. The budget bucket is not endless and unless science is viewed as equal priority in primary schools it can be overlooked. Financial assistance to resource science effectively is necessary. These resources include both physical and human aspects. To deliver quality and effective science, primary teachers need the equipment and the knowledge to do so. I was fortunate enough to be part of the Australian Science Teachers Association (ASTA) Science Teachers Exchange to Japan in 2014, an experience that was a career highlight and one that I could not recommend highly enough. Japan, one of the highest performing nations in PISA, places a great importance upon learning science in primary schools. Primary schools we visited had an enviable well-stocked science room. Students from Grade 3 and above are taught three hours of science each week. Teachers are well supported to develop an understanding of science process and science content. Graduate teachers are supported in their beginning year through a senior mentor teacher. Principals are highly involved in science training with their teachers and provide significant support through workshops and feedback. There are lessons there for us here in Australia. We need to support our teachers. Primary school teachers do amazing things every day yet there is a limit of what we can achieve in isolation and when unsupported. Primary school science is so rewarding. Unfortunately this view is not held by every primary teacher due to weighty constraints. Imagine the endless possibilities, if only science and primary teachers were given endless support.


  1. J Hattie 2003, ‘Teachers make a difference: What is the research evidence?’ paper presented to Australian Council for Educational Research Annual Conference, Melbourne, 19–21 October.
  1. Australian Curriculum, Assessment and Reporting Authority 2013, ‘National Assessment Program – Science Literacy Year 6 Report 2012.’
  1. S Thomson, K Hillman, N Wernett, M Schmid, S Buckley & A Munene. 2011. ‘Highlights from TIMSS & PIRLS 2011 from Australia’s perspective.’
  1. S Thomson, L De Bortoli, S Buckley. 2012. ‘PISA in Brief, Highlights from the full Australian report: PISA 2012: How Australia Measure up. The PISA 2012 assessment of students’ mathematical, scientific and reading literacy.’

Danielle Spencer is a passionate primary school teacher, currently in her eleventh year of teaching. With a long and extensive background in paediatric nursing, Danielle particularly enjoys teaching science and discovering the world again through a child’s eyes. Danielle upholds inquiry-based learning as best practice and she aims to promote the discipline of science within her school community. After completing a Graduate Certificate in Primary Science in 2011, Danielle established an extra-curricular science club at Mitchelton State School. She currently coordinates the three extra-curricular science clubs at Mitchelton, SC@M (Science Club at Mitchie), SC@M in Space Astronomy Club and Robotics Club. Danielle also currently acts as Science Coach at Mitchelton State School.

Danielle has been an author for online science journal Australian Science where she has written on various aspects of science pedagogy in primary schools. She has delivered regional conference sessions and been involved in facilitating state-wide training on science literacy and pedagogy. In recognition of her dedication to primary school science and her innovative work practices, Danielle was awarded a Peter Doherty Outstanding Teacher of Science Award in 2013.

Australian Science Teachers Association

Founded in 1951, the Australian Science Teachers Association is the federation of Science Teachers Associations from all Australian states and territories. It is the national professional association for teachers of science and a powerful voice influencing policy and practice in science education. Please visit for more information.




Teaching a mixed-year class: how to tell the time IN ONE LESSON



Larisa has 18 years’ teaching experience and currently has a mixed-year class comprising children from Prep, Year 1, and Year 2. She had heard about the EasyRead 3 Step Time Teaching System and was curious to see if it had any merit – this is her story.

Prep are not expected to learn anything other than o’clock. Year 1 move to o’clock, half past and a bit of exposure to quarter past and quarter to. Year 2 also do this and then start to move into 5 min increments etc.

It has been my experience with EVERY class that they really struggle with the concept of time, particularly minutes TO the hour.

After researching your system, I got our classroom clock off the wall and grabbed some whiteboard markers. I told the kids I was going to draw all over it but that it would help them learn to tell the time.

First I wrote the numbers (minutes) around the frame of the clock on the ‘past’ side, counting the minutes as I went. Then I started on the ‘to’ side doing the same thing.

After writing all the minutes on, I drew a line down the middle of the clock and wrote ‘past’ and ‘to’ on the glass and I then showed them their new clock.

I then randomly set the hands and modelled to them the 3 step process a few times…the lights started to go on in their heads!!!!

So I thought I would start with the Year 2s and I gave a time to each one and got them to use the 3 steps; 100% success here. Then Year 1s and Preps were keen for a turn so I did the same thing with them…helping them and explaining as I went.

We played a game with it, whereby if the kids got their turn correct they got a point. There were 16 kids in the class that day and the score was 16-0 to the kids. It was brilliant EasyRead 3 Step Time Teaching System works so easily and I was impressed with the immediate results.


Children’s wellbeing in the modern world



Australian kids have a very different childhood to their parents. A generation ago kids played in the streets, often out of sight and contact from their parents for hours on end. In many neighbourhoods today this would be regarded as parental negligence. Where once kids found their own way to school on foot or bike, today most kids are driven to school. The games they play are also different, the vast majority of game time is screen based – whether it is at home, in the car, or at a friend’s place – the screen is the focal point. All of this has implications for childhood learning and wellbeing and the role of schools, writes Anthony Phillips – Director, Camp Australia.
Many young families today have tried to follow the Australian dream and so look to buy their own home so that they can settle down and raise a family. With property pricing being what they are, this is usually a significant financial burden. There are a number of flow-on effects from this which significantly change the physical nature of childhood today:

  • In three out of five Australian families both parents work;
  • Housing blocks are smaller, houses are bigger, making backyards much smaller; and,
  • Safety concerns discourage kids being on the street or at home unsupervised.

While these are relatively easy for parents and teachers to comprehend, the impact of the internet and social media is perhaps less understood. While the internet provides children with access to an unprecedented level of information, it is not without its problems. Firstly many young children cannot distinguish between fact and fiction, or quality and nonsense on the internet. Secondly the internet makes the full breadth of human nature available to anyone who wants to see it – and unfortunately to many who do not. Subsequently the internet is not a safe neighbourhood. Social media is also proving to have some unforeseen consequences. One familiar to many schools, although more typically high schools, is cyber-bullying. One less understood by older generations is the relentless pressure on children to be ‘on’ because their peers are also their paparazzi. With modern phones, any mistake can be recorded and published on social media before the individual has even had time to recover their breath or get their bearings. With these things in mind perhaps we should be grateful that more kids are not suffering from stress and anxiety, rather than surprised that a few of them are.

Many parents are trying hard to ensure physical activity is part of the kid’s child-hood. It is one of the reasons that organised sport is such a major part of the lives of many children outside of school hours. However while this is commendable, structured sporting activities, particularly competitive ones, do not replace all of the benefits children were getting from unstructured play a generation ago.

Unstructured or free play allows children to explore and extend their physical and mental capabilities in their own way. Learning life skills like negotiation, compromise, leadership and teamwork in a variety of circumstances and often from a number of perspectives. For example a simple game of hide-and-seek quickly gives a child the perspective of both the hunter and the hunted. Imagination games allow children to explore the role and importance of rules as they create their own world order. They also help them to understand that in order to lead, one needs to have the ability to get others to follow. Many of these games by their nature combine physical and mental stimulation and activity in ways that build a child’s self confidence in both of these spheres.

It is perhaps a little ironic that after school care, which a generation ago was regarded by children as restrictive, is now one of the best opportunities a child has for free play. This is not to say that it is unstructured chaos, or a longer version of lunch time. However, quality after school care does provide children with a safe environment in which they are encouraged to explore their own ideas as well as new things. After School Care is not what it used to be, it delivers a safe, reliable and nurturing environment for kids to play and grow and it definitely makes kids smile – that is why we do it.

Anthony Phillips is a qualified teacher with over 30 years’ experience in education and school aged care services. As founder and Director of Camp Australia, a leading and trusted after school care organisation providing services to more than 600 schools. Through the Camp Australia Foundation Anthony also strives to positively impact the lives of children beyond the school yard fence.

NSW Govt reveals part of its Gonski spend


Sydney public schools will benefit from a $224 million New South Wales Government initiative that aims to improve the quality of teaching.

The program, dubbed Quality Teaching, Successful Students, was launched by the state’s Education Minister Adrian Piccoli and forms part of the funding promised to schools this year as a result of the NSW Gonski schools funding agreement.

It is currently being rolled-out across NSW and will enable more than 1,000 of the best teachers to mentor and coach other teachers.

Piccoli said the program will improve the skills of teachers and, in turn, improve learning opportunities for students.

“Experienced teachers have knowledge and skills that are even more valuable when they are shared with their colleagues,” he said.

The package enables selected teachers to:

  • Observe colleagues in their classrooms and demonstrate effective teaching strategies;
  • Monitor student performance data across the school to ensure teachers are focused on areas of need; and,
  • Collaborate with colleagues within their school and in other schools.

NSW Teachers Federation Deputy President Gary Zadkovich highlighted the importance of additional support being provided to primary schools.

“For many years the NSW Teachers Federation has been campaigning to achieve increased release time for executive teachers in primary schools so they have the opportunity to mentor and support teaching colleagues in enhancing teaching practice,” he told Education Matters magazine. “This is a welcome additional resource for primary schools and we believe it will greatly assist in further strengthening teaching and learning practice.

“This program will provide important support for teachers to engage in professional development, professional learning, to enhance teaching practice and improve student outcomes.

“It’s really important that teachers are provided with the time to work collegially in their workplace to enhance teaching practice. More time for teachers to collaborate, to share ideas, to support one another, to program cooperatively and develop more effective teaching and learning approaches is good for students and will overall enhance the quality of public education.

“This is also a very important example of the benefits of the Gonski schools funding system – $224 million of additional Gonski funding is going to greatly benefit public schools right across the state and this is yet another example of the importance of all governments around Australia committing to fully funding the Gonski model.”


Northern Beaches Christian School opens world-class education building


Sydney-based Northern Beaches Christian School (NBCS) is excited to announce the opening of its Manhattan building, an innovative approach to school design.

Designed by WMK Architecture, Manhattan is a world class, open learning and social space for both students and teachers. It is designed to help students discover and explore and to inspire them to take charge of their own learning, with expert guidance and support from the NBCS teachers.

“Our aim at NBCS is to make learning deep, engaging, relevant and fun,” Stephen Harris, NBCS Principal, said. “We wanted a building that will inspire our students by creating a wonderful learning environment and Manhattan is a fantastic addition to our school campus.”

The Manhattan building is designed to enable truly personal, authentic and customised teaching. There is clear evidence that well designed spaces have an immediate and positive impact on creative thinking, productivity and learning.

A vital element of the design, is the space known as the City which includes a café and a variety of connection spaces. This precinct is fast becoming the heart of the school community.

“We’ve designed an architecture of spaces, it’s not just buildings that define the heart of the school campus and lead the way for new innovative learning in Australia and worldwide,” Greg Barnett, Managing Director of WMK Architecture, said.

The building was completed on time, under budget and it meets very strict environmental and sustainability standards. Solar power provides the building’s energy needs during the day, rainwater is collected and all food waste is recycled.


Early uni places for Year 12s up for grabs in Victoria


Victorian-based La Trobe University has launched its annual Aspire Early Admissions Program that gives Year 12 students the opportunity to secure an early university place.

Now in its second year the Aspire program offers Australian high school leavers who volunteer and give back to their community the opportunity to secure their place at La Trobe before the completion of final exams.

In order to qualify applicants need to be a domestic Year 12 school leaver actively volunteering in the community. The level and length of their volunteering engagement, coupled with a school recommendation and minimum Australian Tertiary Admissions Ranking (ATAR) grades, will form the basis of the assessment.

La Trobe Vice-Chancellor Professor John Dewar said the program encourages volunteerism and education in Victoria, while supporting a diverse range of community organisations.

“At La Trobe, we are committed to making a positive difference to the world in which we live, and the Aspire program enables us to support the efforts of inspiring young people whose values and ambitions align with ours,” he said. “We want to encourage these community leaders of the future to come and study at La Trobe University.”

Stacey Cockram, who started at La Trobe this year under the Aspire program, has been a Surf Life Saving volunteer for five years and managed to successfully balance her studies with community work throughout her high school years.

“Receiving an offer from La Trobe to pursue a Bachelor of Outdoor Education, before ATARs were released, was a memorable milestone in my life,” she said. “I feel like it has really fast-tracked my career.”

Already in support of this unique program are the Country Fire Authority (CFA), St John Ambulance and the Duke of Edinburgh who are providing their secondary school student volunteers with priority access to the Aspire program.

Volunteers who have been committed to the CFA or St John Ambulance for a minimum of six months will automatically meet the community engagement requirement for the Aspire program. Duke of Edinburgh participants with a Bronze medal or above will also automatically qualify.

Martin Wells, Community Relations Manager and St John Ambulance Victoria, said the organisation is delighted to give its cadet volunteers an early university placement to reward them up-front for their selfless acts of providing First Aid in their community.

“Having already received significant interest from our cadets as they approach final year schooling, it is encouraging that they see value in this offer as much as we do,” he said. “It’s a real benefit to our cadets who work hard to be the difference in their community to have this opportunity with such a prestigious and well regarded institution as La Trobe University.”

Applications for Aspire are now open and if successful, students will receive an offer to study at La Trobe in September this year. For more information, students can visit the Aspire website and organisations interested in partnering with La Trobe can contact Melanie Edgar